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1. INTRODUCTION 

Frequently data analysis and mathematical modeling require compu- 
tation of derivatives of functions given at discrete points only. 

For instance, temperature dependent heat capacity can be determined^ by 
differentiating heat content. Dependence of the rate of plant photo- 

synthesis on light intensity is computed^ by measuring the amount of 
absorbed substances and by differentiating collected data numerically. 
Another example is the rate of elimination of a drug from blood, ob- 
tained by differentiating the measured concentration at successive time 
instances. These are three examples from rather diverse fields of in- 
quiry. There are numerous investigations at BRL also requiring differ- 
entiation of tabular data. One example of such a problem is computation 

of target speed and acceleration from measured position coordinates.^ 

Another is computing a drag coefficient^ from the differential equations 
of a flight trajectory by substituting velocity and acceleration values 
computed by differentiating position coordinates derived from radar 
data. Also the speed and acceleration of a projectile in the bore of 

5 
a gun have been determined by computing derivatives of discrete posi- 
tion data obtained by a microwave interferometer.  Further examples of 
BRL research requiring differentiation of tabular data include deter- 
mination of the slope of a shock front from discrete position points, 
computation of lead angle for antitank guns, and others. 

In the cases mentioned above the derivative was obtained by BRL 
researchers either by drawing a smooth curve through the plotted points 
and then measuring its slope, or by a moving polynomial arc technique, 
or sometimes by use of a mechanical spline. 

There are numerous open literature publications that discuss 
various numerical methods for computing derivatives of tabular functions. 

T.F Dolgopolova and V.K. Ivanov, On Numerical Differentiation  Zh 
Vychisl Mat. Fiz. 6, 3, 570-576, 1966. 

2 
R.S. Anderssen and P. Bloomfield, "A Time Series Approach to Numerical 
Differentiation." Technometrics 16, 1 69-75, 1974. 

C. Masaitis, G. Francis and V. Woodward, "Survival vs. Horsepower per 
Ton Test Data Analysis," BRL MR 2518, 1975. (AD #C003211L)      ^ 

4 
R.F. Lieske and A.M. MacKenzie, "Determination of Aerodynamic Drag from 
Radar Data," BRL MR 2210, 1972. 

5 
F. Yagi, B. Jansen, L.B. Kennedy, W.C. Taylor, "Analysis of Interfero- 



Some of these simply differentiate polynomial interpolation formulas; 

others use least squares fits of the data by trigonometric or alge- 
8 9 

braic polynomials. Still others use polynomial splines.  This last 
method imposes certain smoothness conditions on the fitted functions, 

and similar conditions are introduced by applying Tikhonov's  regu- 
1  • 4.-      A        1,11.12 lanzation procedure. 

Smoothness conditions of the spline functions and of the regulari- 
zation procedure attempt to overcome the sensitivity of computed de- 
rivatives to small perturbation, i.e., the ill-posedness of the dif- 
ferentiation problem. Because of this sensitivity simple methods such 
as central difference or moving polynomial arc seldom produce satis- 
factory values of derivatives of tabular data containing measurement 
errors. Under these circumstances much more complicated methods are 
required, such as those of regularization, spline, or the method de- 
scribed in this report. 

Since tabular data contain information about the function at dis- 
crete points only, and a derivative is the limit of a certain ratio, it 
cannot be obtained from numerical data without additional assumptions. 
The most common assumption is that tabular data are values of a certain 
function which can be identified on the basis of the data and subse- 
quently differentiated to yield the values of the derivative. For in- 
stance, the approximation of a derivative by the divided difference 
assumes that tabular data can be represented by a straight line, at 
least locally. An extension of this assumption is obtained by fitting 

D.B. Hunter, "An Iterative Method of Numerical Differentiation," Comp. 
J. 3, 270-271, 1960. 

A. Talmi and G. Gilat, "Method for Smooth Approximation of Data," 
Journal of Comp. Physics 23, 93-123, 1977. 

H.C. Hershey, J.L. Zakin and R. Simha, "Numerical Differentiation of 
Equally Spaced and Not Equally Spaced Experimental Data," Ind. Eng. 
Chem. Fundam. 6, 413-421, 1967. 

P. Craven and G. Wahba, "Smoothing Noisy Data with Spline Functions," 
Numer. Math. 31, 377-403, 1979. 

A.N. Tikhonov, "Solution of Incorrectly Formulated Problems and the 
Regularization Method," Soviet Math. Dokl. 4, 1035-38, 1963. 

J. Cullum, "Numerical Differentiation and Regularization," Siam J. 
Numer. Anal. 8, 254-265, 1971. 

1 2 
R.S.  Anderssen and P.  Bloomfield,  "Numerical   Differentiation Pro- 
cedures for Non-Exact Data,"  Numer.  Math.  22,  157-182,  1974. 



a polynomial of prescribed degree and then differentiating it. For 

computational convenience, orthogonal polynomials may be selected^ 
and data represented by a linear combination of these polynomials  The 
moving polynomial arc procedure assumes that the data can be locally 
represented by a polynomial of a specified degree. Thus, this pro- 
cedure is, in a certain sense, a generalization of the divided difference 
approximation, which represents the data by a first degree polynomial 
fitted to two data points. Representation of data by spline functions, 
which are polynomials on the intervals between the nodes, also belongs 
to the same class, with a special data fitting criterion assuring that 
the L^ norm of a derivative of certain order is sufficiently small. 

Besides polynomials and splines, frequently trigonometric polyno- 
mials and linear combinations of exponentials (exponential polynomials) 
are used to approximate tabular data, and then their derivatives are 
computed by differentiating the approximating polynomials. Also 
approximation of tabular data by a linear combination of arbitrary 

orthogonal functions is frequently discussed in the literature.^ How- 
ever, in applications these functions are nothing more than Legendre or 
Chebychev polynomials, trigonometric functions, or just powers of the 
independent variable that are not even mutually orthogonal. 

Thus almost all the approximations encountered in practice are 
least squares fits by algebraic, trigonometric, or exponential polyno- 
mials either of a global type or local as with a moving polynomial arc, 
and either without additional constraints or with certain constraints 
as in the case of the spline procedure. Consequently, all these methods 
can be generalized by choosing an approximating function from the al- 
gebra, call It A for convenience, generated by algebraic, trigonometric, 
and exponential polynomials and by properly formulating an approximation 
criterion. 

Usually the type of linear combination of selected functions is 
chosen in advance and only the weighting factors of this combination 
are adjusted to the data according to a selected criterion (mostly the 
least sum of residuals squared). Such a choice presupposes that the 
type of the function represented by the tabular data is known independ- 
ently of the data, and the latter are used only to determine the weight- 
ing factors. A rather rare deviation from this procedure compares the 
reduction of the root mean squared error (RMSE) of the fits by polynomials 

of increasing degree and selects an approximating polynomial accordingly.^ 
In this report a procedure is described for automatically selecting an 
element of the algebra A that minimizes the RMSE in an autoregressive 
model subject to constraints implied by three additional assumptions. 

All the approximations mentioned above yield functional values 
y(t) as linear combinations of tabular data, x.'s, with the weighting 

factors being linear combinations of the selected basis functions such 



as polynomials, exponentials, etc., say (})i(t), (Jj^Ct),... ,(j). (t) 

k 
y(t) = I X  [ C.. cj) (t). (1.1) 

j ^ i=l J^ ^ 

The coefficients C. may be independent of the data as in moving poly- 

nomial arc or regression procedures, or they may be rather complex 
functions of data points as in regularization and spline methods. Dif- 
ferentiation of (1.1) yields the derivative of the approximating func- 
tion as a linear combination of data values: 

y'(t) =1    X.    I    C   cj,' (t). (1.2) 
j  ^ i  -^ 

The weighting factors in (1.2) depend on t, i.e., on the position of 
the argument t relative to the data points, t/s, used to determine the 

coefficients C... If the position of t is fixed, say, at the midpoint 

of the span of t/s, then the coefficients C.. are independent of t. 
J J ' 

However, in either case the derivative is expressed as a linear combina- 
tion of the data values, just as in the special case of its approximation 
by a divided difference. 

1 1112 
The regularization procedure ' '  obtains a numerical derivative 

by selecting an element in a Sobolev space by minimizing the sum of 
residuals squared plus a term proportional to the square of the norm of 
the approximating function. Thus, this is an extension of the spline 

9 
approximation which considers only a particular norm of Sobolev space."^ 
Furthermore, in practical applications the regularization procedure is 
restricted to readily computable elements of the Sobolev space and typi- 

11 12 
cally considers only trigonometric polynomials. ' 

In view of this it is natural to consider only representations of 
derivatives of tabular functions by linear combinations of the data 
values and to determine the weighting factors of such a combination 
directly from the data with a minimal set of assumptions. This is the 
approach of the present report. 

Our basic assumption is that the given data represent an element 
of the algebra A as defined above. A criterion as to what constitutes the 
best representation of the data is our second assumption. It depends on 
the sum of the squares of certain residuals and on the degree of ill-con- 
ditioning of the problem. The definition of this criterion is contained 
in the next section. The criterion yields only the structure of an ap- 
proximating element. The values of the element parameters can be subse- 
quently determined by a linear least squares fit to a selected segment 
of the data. A derivative of any order is obtained either by differ- 

8 



entiating such a fitted approximation or by computing the weighting 
factors directly from the structure of the element. 

Our third assumption is on the number of data values (and weight- 
ing factors) in the linear representation of a derivative. It is shown 
in this report that the derivative of every  element of A is representa- 
ble as a linear combination of its values and, conversely, a function 
is in A if its derivative can be represented as a linear combination of 
a finite number of its equally spaced values from any of the several 
data intervals. 

Our fourth assumption is that the step size in the tabular data is 
sufficiently small so that the structure of the corresponding element 
of A is uniquely defined by the values of the data. This assumption 
implies that the selected element of A is sufficiently smooth, with the 
degree of smoothness determined by the step size and the accuracy of 
the data. 

These four assumptions, spelled out precisely in the following 
sections, yield values of the derivatives that are sufficiently faithful 
to the empirical data and at the same time provide good approximations 
of derivatives when applied to synthetic data. Sections 2 and 3, to- 
gether with Appendix A, present formal derivations of approximating for- 
ulas for both tabular data and related derivatives, first determining 
suitable structure based on eigenvalues and then finding parameters by 
least squares procedures. Section 4 deals with the frequently encount- 
ered case in which no eigenvalue is repeated. Here the formulas for the 
weighting coefficients can be simplified and rewritten in closed form in 
terms of real elements only, with a consequent reduction in round-off 
error as well as enhanced practical convenience. Section 5 presents 
formulas for approximating theoretical error bounds for derivatives 
computed by the procedures of Section 4. Appendix B illustrates the 
accuracy of the method and compares it to the accuracy of derivatives 
obtained by other commonly used methods. 

2. APPROXIMATION OF TABULAR FUNCTIONS 
AND THEIR DERIVATIVES 

As stated in the introduction we approximate tabular data by an 
element of the algebra A generated by algebraic, trigonometric, and 
exponential polynomials of a real variable t e[0,T] with real coeffi- 
cients. An approximating element of A is selected in two steps, by first 
determining its structure, most appropriate in a certain sense, and next 
by determining its parameters by a least squares fit. 

2.1 Data Structure 

The structure of an element of A approximating tabular data is 
obtained by observing that a function which satisfies a family of linear 



difference equations dependent on the scaling of the independentvaria- 
ble is contained in A and, conversely, every element of A satisfies a 
linear difference equation of a fixed order with the coefficients de- 
pendent on the scaling of the independent variable. 

By Demoivre's theorem trigonometric polynomials can be expressed 

as linear combinations of expressions (cos 9. ± i sin 9.) = X^  with 
±ie. 

X. = e      -^   , i.e., a trigonometric polynomial  is a linear combination 

of exponentials with complex bases.    Similarly, exponential  polynomials 

9.t . 
are of the form T c. e "^    = Y c. X..    Consequently, every element of A 

^    J ^    J    J 
is representable in the form 

m        n. 

f(t)   =    I        I        c      XUP (2.1) 
j=l      p=0      JP    ^ 

with X/s either complex or real. To every complex X. in (2.1) there 

corresponds its complex conjugate, say, X.^^ with n .^-| = n^. Let 

A > 0 and write (2.1) in the form 

f(t) = I  ? C     il)\xp~'  , (2.2) 
j=l p=0  -^P ^  ^ 

where c'. = c. A^. Define the polynomial P.(X) of degree k where 
JP   JP ^ 

m 
k =    I  (n,+l) (2.3) 

0=1 ^ 
as follows 

PAX) =    n (x-x.'^) J  . (2.4) 

Let the operator B^ be defined by B^ f(t) = f(t-A). Then it follows 

from the properties of linear difference equations with constant co- 
efficients that f(t) given by (2.2) satisfies the k-th order difference 
equation 

P^(B^)f(t) -  0, -      (2.5) 

i.e., if f(t)eA then for every A > 0 f(t) satisfies the difference 

10 



equation of the form (2.5) defined by the A., their multiplicities 

n^.+l , and A. This can also be shown by substituting (2.1) in (2.5). 

The converse is also true, i.e. if 

(a) y(t) satisfies (2.5) for e\iery  A > 0 and some A.'s and 

(b) y(t) has bounded derivatives up to order k on the 
interval [0,T] 

then y(t)eA. Without loss of generality we can assume that 

(c) y(t) satisfies no linear difference equation of order 
less than the k given by (2.3). The fact that such 
a y(t) is in A follows from the following proposition: 

Proposition 1. If y(t) satisfies conditions (a), (b), and 
(c), then it is a solution of the differential equation 

P(D)y(t) = 0 (2.6) 

where D = ^ and 

m        n.+l 
P(C) = n (^ logX.) J 

j=l      -^ 

Proof:    By writing y^"^^  = lim     ^  
A^    A'^ 

(2.7) 

and by applying Lemma 1 in 

(k), 
Appendix A we have y^^^ = l^ ^ JiiAl 

dA' A=0 
Hence by (A.10) and 

Lemma 3 of Appendix A  y^'^^t) = I    (-1)^""^ S .y^'^"^^(t) 
j=l k,j 

Consequently, by the definition of S,  (see Lemma 3), y(t) satisfies 
(2.6). ''' 

In view of the relation between the algebra A and the equation (2.5) 
an element of A that approximates tabular data can be selected by con- 
structing an appropriate autoregressive model by, say, a procedure de- 

veloped for time series analysis^^. However, this requires an assump- 

13 
G.E.  Box and G.M.  Jenkins, Time Series Analysis:    Forecasting and 
Control.    Revised Edition.    Holden-Day,  1976. 

11 



tion of stationarity or else instead of the original data, say x(n), 

n=0,l, ...,N, one must approximate differences A x(n) of order d that are 
assumed to be stationary. However, this assumption need not hold for 
tabular data that must be differentiated. For instance, if the under- 
lying function is exponential the differences of any order are exponential 
and hence non-stationary. An example of this type of data is a concen- 
tration of injected drug in blood measured as a function of time after 
injection. In view of this, instead of attempting to determine the 
order of differences that may produce stationary series and at the same 
time considering possible periodicity ("seasonal" variation), we choose 
a direct method for estimating the coefficients of an autoregressive 
model. To this end we write x(n,p,q) for x(p+qn) where q is any positive 
integer and p=0,l,2,...,q-l,n=0,l,...,Np, where Np=[(N-p)/qJ is the largest 

integer not exceeding (N-p)/q. Let y(t)eA be an approximating function 
of the data, i.e. 

x(n,p.q) = y(rA) + e^, (2.8) 

where r=p+qn and e    is an observation error assumed to be weakly sta- 
^ 2 tionary white noise with zero mean and variance a .    The function y(t) 

satisfies (2.5) for a suitable polynomial P, say, of degree k since 
y(t)eA. We write this equation as follows 

k 
y(rA) = I    a. y[(r-jq)A] , (2.9) 

j=1 ^ 

where the a.'s remain to be determined. By substituting (2.8) in (2.9) 

we get 
k 

x(n,p,q) -  e    =    I    a. [x(n-j,p,q) -  e     .]. (2.10) r  j.^i J r-j 

By transposing the terms in (2.10) and squaring both sides we get: 

k 
x(n,p,q) - i a. x(n-j,p,q) 

L        j=l ^        -" 

= e^ +    I    a^ e^ . + P , (2.11) 
r   >.  1  r-1   r   ' ^ ' 

j=1 
J  r-J 

where P is a linear combination of products e e with u^ v. Since 

by assumption e is white noise, we have E(P )=0. Thus, by taking 

expected values of both sides of (2.11) we get: 

72 



x(n,p,q) - I      a. x(n-j,p,q) 
j=l  J 

j=1 ' 
(2.12) 

We replace the expected value of the left hand side by its estimate 
(average) and get: 

q-1 N. 

i  I  I 
N p=0 n=k+l 

r ^ -1 
x(n,p,q) - I    a. x(n-j,p,q) 

L        j=l ^ J 

j=l J 

q-1 
where   N = I    (N - k) . Thus we get from (2.13): 

p=0  ^ 

(2.13) 

a 

1 q-1   N_ 
~ 1        _ 

p=0 n=k+l 
H    1        i^      x(n,p,q) - I    a. x(n-j,p,q) 
-" - ' 'iL       . - 1 

T2 

J-1 

j=i ^ 

(2.14) 

We choose the estimates of the a.'s that minimize the variance a^. 

These estimates are obtained by the following iterative procedure. Let 

a denote the vector (a^). Assume that the value of a, say a^"^,has 

been obtained on the u-th iteration. By substituting this value in 

(2.14) we obtain an estimate a of the variance of e . Substitution of 

this value for a in the second term of the right hand side of (2.13) 
yields: 

q-1   \ 
I I 

N p=0 n=k+l L 

1 k -.2 
x(n,p,q) -la.  x(n-j,p,q) 

j=l 

- a 
k  „ 

j=l ^ 
(2.15) 

13 



The next estimate a^"    ' of the vector a is obtained by minimizing the 
right hand side of (2.15).    Partial  derivatives of this^expression with 
respect to the a.'s when set to zero and multiplied by N/2 yield 

J 

k q-1      P ~      2 
I    a^A      I      I x(n-j,p,q)x(n-i,p,q)  - N a    a. 

j=l    "J    p=0    n=k+l 

q-""      ^P . ^  !     ■        ^ (2.16) =    I        I x(n,p,q)x(n-i,p,q)   , 
p=0      n=k+l 

i=l ,2,... ,k. Thus, if M is the matrix of the normal equations of the 
overdetermined system 

k 
I    a. x(n-j,p,q) = x(n,p,q), (2.17) 

n=k+l,...,N , p=0,l,... ,q-l, and X is the right hand side vector of 
P (u+1)     ...   2 . 

these normal equations, then the vector a^  ' that minimizes a in 
(2.15) satisfies the equation 

(M - N a/ I)a('''^) = X. (2.18) 

where I is the k X k identity matrix. Successive iterates of the vector a 

are obtained by substituting o^^  = 0 in (2.18) and then by iterating 

(2.14) and (2.18). Thus, we need to obtain the normal equations of the 
overdetermined system (2.17) and then solve the linear equations (2.18). 

In order to compute the a.'s by this procedure we have to choose 
J 

k and the integer q in (2.17). Obviously a larger number of model 
parameters, i.e. larger k, yields a model better matching the data. A 
smaller value of q provides a larger number of data points, i.e. 
describes the structure of the data more accurately. However, in- 
creasing k as well as reducing q makes the system (2.18) ill conditioned. 
Hence the value of k and the data spacing parameter q must be chosen to 

minimize a in (2.14) and at the same time to prevent the matrix in 
(2.18) from becoming nearly singular. Thus, we have two conflicting 
criteria for selecting* the optimal pair (k,q). As usual, a measure 

This is similar to the solution of the numerical differentiation prob- 

lem by regularization  where increasing the regularization parameter 
reduces ill-conditioning of the problem and decreasing the parameter 
yields a better fit of the data. 

14 



of optimality must be chosen heuristically. Our choice is an index 

J(k,q) = a^(k,q)/[D(l<,q)]^ , (2.19) 

where D(k,q) is the absolute value of the determinant of the last itera- 
tion of (2.18) corresponding to the choice of k and q. Thus, we compute 
the ays and J(k,q) for k=l,2,...,kQ and q=l ,2 q^  and select the 

pair (k,q) and the corresponding a.'s that minimize J(k,q). We impose 

an additional constraint on (k,q) in order to prevent a choice of a 
model for which the data are inadequate, i.e. a model that contains 
terms of higher frequency than can be determined by the frequency of 
the data points. Thus, if w is the maximum frequency of the selected 

model then we must at least have 

q A <^ (2.20) 
in 

Suppose further that for some q the coefficients, a.'s, in (2.17) yield 

a real negative eigenvalue, say A. < 0. Then the term c.„ A" in (2.1) 
I  in ^ jO J 

is equal to c.„ |A | cos nir for every n. The frequency of this term 

is IT radians per qA sec or ir/qA radians per sec, i.e. we have w >rr/qA, 
m 

contrary to requirement (2.20). 

If for some k and q the equation (2.17) has an eigenvalue with a 
negative real part, say A. = -a+ib (a>0), then the corresponding term 

c.Q A, in (2.1) is expressible as C.Q exp(pn+iwn) where cos w = -a/A +h 

i.e. w > -^ if expressed in radians per unit time equal to qA sec. There- 

fore this choice of q yields a spacing qA with less than four data points 
per period of the corresponding term in (2.1). Although theoretically 
two points per period may be adequate to determine the real and imag- 
inary parts of the corresponding eigenvalue, even three points per 
period are inadequate when the data contain measuring errors. Further- 
more, a negative real part only implies that the corresponding frequency 
is greater than Tr/2 per unit time. It may also be greater than IT and 
less than 3TT/2, in which case the spacing qA provides less than two 
points per period. This is the reason why the pairs (k,q) leading to 
complex roots with negative real part are rejected. 

In summary, the models (2.17) are determined for q=l ,2,... ,q„, 

k=l,2,...,kQ and among those with eigenvalues having non-negative real 

components that one which yields minimum J(k,q) in (2.18) is selected. 
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When the data is very  noisy this selection of q may lead to a 
rather large step size qA and, thus, may eliminate high frequency terms 
present in the data even if the original spacing A is adequate to repre- 
sent this high frequency. This may happen when the amplitudes of high 
frequency terms are too small relative to the measuring error e to 

be determined by the data taken at any spacing A. The procedure de- 
scribed above is intended to determine only the terms of (2,1) for 
which both the spacing and also the accuracy of the data are adequate, 
and this works satisfactorily in practice. 

2.2 Smoothing and Differentiation 

The procedure just described determines the coefficients a. in 

equation (2.9), i.e. determines the structure of an element of A that 
minimizes J(k,q). The corresponding element of A is then given by (2.1), 

n. 

i.e. by y(t„ + nqA) =    I      I        c. n y., where the y.'s are the roots 
u       j=l i=0 ^^ ^ ^ 

°'     .   k    , . 
U    =    I     a.y^-J (2.21) 

j=l  J 

of multiplicity n .+1.    By reverting back from qA to the original   spacing 

A of the data and by writing A.  for \i.'^ we can write  (2.21)  as  follows: 
vJ J 

n. 
m        j 
I      I        o,y   A^ = x„   , (2.22) 

j=l    i=0 Ji        J        u 

where c.^. = c../q , u = -^ , and y(tQ+t) is replaced by the data value 

x^=x(tQ/A + t/A). 

The coefficients in (2.22) are selected to minimize the RMSE of the 
resulting approximation. This may be either a global or a local approxi- 
mation over the span, say, from u = -K to u = K. In the latter case 
the coefficients c.. are obtained by the least squares method from 

(2.22) with u = -K, -K+1,..,K.^ The corresponding normal equations are 

i+a ,u ,u    V  ,.  .a ,u K         m 
n . 

,1 
I         I I 

u=-K    j=l i=0 

or in matrix notation 

S C = Z. (2.23) 
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Here S is a kxk matrix (k = j (n.+l)) with elements 

K   .^^ 

^zv " ^  "   ^i  ^R'  i=0.1 .--..n.; j=l,2,...,m; a=0,l,...,n„; 
u=-K j 3 

3-l,2,...m. C and Z are column vectors with the components c. and 
K J' 
V       ct  u 
1      x^ u Ag, respectively. From (2.23) we get 

C = S"^Z. (2.24) 

Let A be a column vector with components v^X^. Then substitution of C 

from (2.24) in (2.22) yields a smoothed value of x 

T -1 
Xy = A' S 'Z . (2.25) 

Let Y^ be the column vector with components u°'\^.    Then replacing Z in 

(2,25) we get: 

K     J      ^ 
\ =    I      X A' S"'Y, (2.26) 

where A^ s'ly depends only on the x  's,  u and v but not on x , i.e. 

(2.26) provides a smoothed value of the data point x as a linear com- 

bination of the data values x^. If (2.26) is used to compute the 

smoothed value at the midpoint of the span of the data from -K to +K, 

(i.e. XQ, then the weighting factors remain constant as the span, to- 

gether with its midpoint, is translated along the axis of the independ- 
ent variable t. 

The vector C given by (2.24) can be used to compute derivatives of 
tabular data. By differentiating (2.1), rescaling the independent 
variable t as in (2.22), substituting C from (2.24), and interchanging 
matrix multiplication and summation we obtain the following expression 
for the derivative: 

1 K 
J r.-^ <~-'^X,'u'^'    'u (2.27) 

where A^ = -^ is a column vector with components {u\^.  log X. 

+ iu^-^A^^)^ i=0,l....,nj, j=l,2 m. 

17 



Similarly, higher derivatives are obtained by the formula 

where A 

;;(P). i_ y' 

. £A 
duP * 

\ 'I '~''u (2.28) 

Weighting factors in a formula like (2.28) for derivatives of 
various orders can be obtained directly from the structure of the data 
defined by the eigenvalues of a corresponding autoregressive model 
without computing the vector C in (2.24). Such a procedure is espe- 
cially convenient when all the eigenvalues are simple, and this case is 
described in Section 4. 

3. DERIVATIVES AS LINEAR COMBINATIONS OF 
FUNCTIONAL VALUES 

It was mentioned in the introduction that all the common methods 
for numerical differentiation express derivatives as linear combinations 
of discrete functional values in the form 

y (t) 
k 

I 
i = l 

a^.y[t+(p-i)A], (3.1) 

where p is some integer and A is the spacing between data points used. 
Various methods apply different criteria by which the coefficients a. 

in (3.1) are selected. A generalization 
obtained by identifying a set, say A, of 
relation such as (3.1) and by defining a 

of all these methods could be 
functions that satisfy the 
set of criteria for selecting 

the coefficients. This we do below and in Section 4. 

Obviously, any function that has a derivative at at least one point 
satisfies (3.1) for at least one value of_t. Therefore we restrict the 
set A by insisting that every element of A satisfies (3.1) for all t's 
in an interval such as [0,T]. If we allow the coefficients a. to vary 

with t in a different fashion for every  function in A,_then every dif- 
ferentiable and non-vanishing function in [0,T] is in A, since we can 
write f (t) = [ f (t)/f(t)] f(i) which is a special case of (3.1). 
Therefore we define the set A as a set of functions y(t) each of which 
satisfies 
t. 

(3.1) with a.'s dependent only on y(t), p, and A but not on 

We choose in (3.1) p=k+s+l and replace the summation index i by 
-j+k+s+1. This yields 



k+s 
/ (t) = I      a(j,s) y(t + jA), (3 2) 

j=s+l 

where a(j,s) = a_j^^^^^^. Thus, the set A is defined as a set of 

A: 
The following proposition is implied by Lemmas 4 and 5 in Appendix 

_ Proposition 2. A = A, where A is the algebra generated by alge- 
braic, trigonometric, and exponential polynomials over the interval 
L'J»' J • 

Proof: First we show that X c A. To this end we choose s=-l in (3.2) 
a na wr1te 

k 
y'(t) = I    b^l^ y[t+(j-l)A] , (3.3) 

j=l ^ 

where b^^^^ = a(j-l, -1). We observe that 

y^^^(t) = J b.(qV[t+(M)A], (3.4) 

for q < k and some constants b^^^^ This relation is proved by induc- 

?5°;^°[; ^'. L"^^^^' f^-"^^ ^°^^' ^°^ ^=1 because of (3.3). Suppose 
(3.4) holds for q < k. Differentiation of (3.4) with respect to t 
yields: 

y^'"'^ (t) = I   b/q)/[t.(M)A] . J   . ^-vo w^. . (3.5) 

?nSev'ftn ^ h f^ ^?[-^ '■" i^^^' ^'^ ' - -^-1  ^"d ^^^"Se the summation index J to u-h-1.    This yields 

k 
y'(t+hA)  =    Z a(u-h-l, -h-l)y  [t +  (u-l)A]. (3.6) 

u=l 

It follows from (3.5) and (3.6) that y^P"^^^(t)  = 

I    b/q^^) y[t.(j-l)A], where b (^^1)  =    J    b (q)a(j-u, -u),  i.e. 
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(3.4) holds for q+1 and consequently it holds for q=l,2,...,k. Let B 

be the kxk matrix with q^^ row (b^ ^^^b2^'^^,... .bj^^'^O • If B is non- 

singular then we have from (3.4): 

y(t) = I   cy(J)(t). (3.7) 
j=i ^ 

where the c.'s are the corresponding elements of B" . If the rank of B 

is less than k, then there exist constants d^ ,d2,... ,d|^, not all zero, 

such that 

q=l ^ J 
0. (3.8) 

j=l,2,...,k. Hence it follows from (3.4) that 

I    d^ y^^' =  0. (3.9) 
q=l q 

Consequently y(t) e A satisfies either (3.7) or (3.9) and hence y(t)eA, 

i.e. AcA. 

The converse inclusion AcA follows from Lemmas 4 and 5 in Appendix 
A. Indeed, let y(t)eA, i.e. let y(t) be of the form (A.20) as in 
Lemma 4. The lambdas in (A.20) define the matrix L of Lemma 4. By 
Lemma 5 det L ^ 0. Hence there exists a unique solution vector b of 
equation (A^21) in Lemma 4. Consequently, y(t) satisfies (A.22) and 
hence y(t)eA, i.e. AcA. This completes the proof of the proposition. 

Thus, if we either assume that tabular data can be approximated by 
an element of A, or that the derivative of the corresponding function 
can be expressed as a linear combination of certain data values, then 
in view of propositions 1 and 2 an approximating element can be ob- 
tained by constructing an appropriate autoregressive model such as (2.8) 
in the preceding section. In other words, the method described in the 
preceding section yields the exact derivative for a function in the 
set A=A, or, equivalently, in the set of functions that satisfy a 
family of difference equations of the type (2.4). 

4. DERIVATIVES WITH SIMPLE EIGENVALUES 

Equations (A.21) and (A.22) in Appendix A yield derivatives of 
tabular functions representable by autoregressive models, including 
those with simple eigenvalues. The needed weights b.  in (A.22) are 
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obtained by solving the linear system of equations (A.21),  This re- 
quires complex number arithmetic since the coefficients in the equation 
(A.21) are imaginary for imaginary eigenvalues >... 

A closed form expression in terms of components of complex eigen- 
values can be obtained for the case of simple characteristic roots. An 
element of A corresponding to this case is 

y(t) = I     c.x] , (4.1) 

i.e. it belongs to the subalgebra of A generated by trigonometric and 
exponential polynomials. The case of simple eigenvalues is of practical 
interest for the following reason. 

Equality of two eigenvalues defines a functional relation between 
the Sj's, the coefficients of the corresponding autoregressive model, 
i.e. n defines a hypersurface in the k-dimensional Euclidean space 

X^  of a^,a^,...,a^.    Thus, the set of vectors a in X^*^^ that define 

multiple roots has Lebesgue measure zero. Therefore if we assume that 

experimental data yields points of aeX^ \ all equally likely in a 
finite region, i.e. with probability distribution proportional to the 
Lebesgue measure, then the probability of obtaining equal or nearly 
equal eigenvalues is very  small, although synthetic data derived from 
algebraic polynomials does yield multiple roots. 

In order to obtain a closed form solution of equation (A.21) we 
need the following lemmas. 

_ Lemma 6. Let V^^^ be the Vandermondian of XQ,X, ,X2,... ,x and 

V^^'^'' be its minor corresponding to the element x^. Then 

V ^j) = S  . V ^"^ , (4 2) n     n-j n   ' \'*-<^) 

where S . is the symmetric function of x,,x,,...,x of order n-j and 
(n) . '^ \    d n 

V^   IS the Vandermondian of X, ,X2,... ,x. 

Proof. By expanding V^_^^ with respect to the first row (the row con- 

sisting of powers of XQ) we get 

n     .  .  , .V 

V , = y  (-1 ^•^ X '^ V ^•^^ n+1  j^Q ^ ' ^ ^0 ^n   • 
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Divide both sides by (-1)" V^^"^ 

n "^ n 

r    \ 
Since V^      is itself a Vandermondian we have 

/   N    n      j-1 n      J-1 
v^^"^= n  n (x.-x.). Also, v„,, = n  n (x.-x.). 
"   3=2    i=l  ^ ^        " '  j=l i=0 ^    ^ 

Therefore we get from (4,3) 

j=l  ^   ^        j=0       ^  V„^"^ 

V ^J^ 
(4.4) 

The right hand side of this identity is thus a polynomial in Xg of 

degree n with the roots Xi,Xp,...,x , and the coefficient of XQ is 

equal to one. Therefore the coefficient of x^'^ is (-1) ""^ ^n-i' '^^^^> 

we have from (4.4) S _. = V^^"^Vv^^"^ which is (4.2). 

Lemma 7. Let S. be the symmetric function of X,,X„,...,X. of 

order i and S.^^^ be the symmetric function of X, .Xp" • •'''^n.i'-^^n+i >• •-.X. 

of order i. Then 

S>^ = I      (-1)^" S. .xj   . (4.5) 
T   j=o     ^"-J P 

Proof by induction on i.  For i=0 (4.5) is an identity 1=1. Suppose 
(4,5) holds for i < k. The function S.^-, can be expressed as the sum 

of all the products of i+1 factors taken from X, 5X2,.. ,X, ,X •,,... ,X. 

plus the sum of all the products of i factors taken from the same set 

with each product multiplied by X , i.e. S.^-, = S.^-,^'^' + S.^'^'X or 

S.^T^P^ = S.^T - S.^P^X . By substituting S.^P^ from (4.5) we get 1+1     1 +1   1   p   "^ ^1 
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u=l 

i+1 
i_u+i> - JQ (-^)"^-+l-u^p-    This is the A "i+1    "i+1 

relation (4.5) with i advanced to i+1 and the proof is complete. 

When all eigenvalues are simple equation (A.21) is of the form 

;A. s+1 

' xJ'' 

s+2 

s+2 

s+k\ 
^1 

..X, 
s+k i 

/'h\    /i°g^i\ 

I ^2!   P°9%i 
s+l s+2 s+k 

(4.6) 

\h k 
\log^, 

where A is the spacing used in determining the X's   (i.e., q times the 
original data spacing). The solution b of (4.6) is obtained by Cramer's 
rule. This allows us to cancel common factors in the numerator and 
denominator that are differences of eigenvalues and, hence, to reduce 
the round-off error. 

The determinant of (4.6) can be written as follows: 

det L = s^^^  V = n x^^^  n [x.-x.) 
J>i 

Let 

and 

Q(Ap) 

P{X) 

I7P 

k 

1   a. 
j=0 ^ 

k-j 

(a^^ = -1) be the characteristic polynomial of (3.1) 

Therefore 

Then 

9A 

k 
=- n (X 

x= x„ j=i  P ^j)' 

J7P 

Q(Apj I  (k-j) a.X^k-J-^ 
j=0      J P 

or 

14.7) 

(4.8) 

(4.9) 

(4.10) 
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q(Xp) y      q a,       X q-l 
(4.11) 

By writing    n (X.-X.)  =    n    (X^ -  X.)    n        (X.  - X.)(-1)    "^ and by 
j>i    ^    '        i=1      P        ^    j>i J        ■■ i=1  P 

I7P i.J?'P 

observing that the last product is a Vandermondian of X,,X^,...,X , 
^   / \ I   c       p-I 

X -,,...,X,, say V, -i  , we can write (4.7) as follows: 

,k-p <- s+1 (P) det L= {-^r^S^-'  Q(X ) V^_/^^^ (4.12) 

Continuing the application of Cramer's rule,  let B.      be the matrix 
j-s 

obtained from L by replacing its (j-s)-th column by the right hand side 
of (4.6). By expanding det B._ with respect to this column we get: 

(4.13) 

where 

det B   =-^^1^   I    (-I)P log^ 
•^ ^   A"^   P=I       f 

s+1 -s-1 (J-s-1), , 
^k ^    Vi    ^p)' 

Vk.i^'"'-^^(P) 

1 X. 

1 X. 

> J-s-2 , j-s 
■^1     ^1 

1 X ....xJ-^-2 X^-l 
p-1   p-1     p-1 

' Vi'"  P+1 X 

,J-s-2 

,X 

X 

k-1 
1 

k-1 
P 
k-1 J-s 

p+1   ''p+l 

•^r^  4"--A'' 

(4.14) 

i.e. V^'^"^" ■'(p) is a corresponding minor of det B.  divided by 
K-I J-s 

^s+1,-s-1 
\ ^p  ■ 

Determinant (4.14) is a minor of a Vandermondian in X^,X,,...,X ,, 

X i,...,X|^ corresponding to the (j-s-l)-th element of the first row. 

Thus, by Lemma 6 above we have: 
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V  (j-s-1), X ^ 3(p)  ^(p) 
'k-1 (4.15) 

where S^P{. is the symmetric function of order k-j+s in Ai,Xo,..., 

X 1 ,A 1,... ,X|^ and V|^_j is the Vandermondian of the same arguments 

By substituting (4.5) in (4.15) we get 

k-j+s 
<r^'(p) = v(p] i  (-')'s,.j,3.„x 

v=0 

Since S. is a symmetric function of the roots of (4.9) we have 

^k-j+s-v  ^ '^       ^k-j+s-v ' 

By substituting (4.15) - (4.17) in (4.13) we get: 

1 k / .^\} . „r, ^s+1 ,-s-l,,(p) 
^^+ D ' V (-U log A S, A V, , det B   = —  ^ ^ '   ^ P k   P   k-1 

^ ^      A"^ P=1 

V"' (  i^k-l 
\lo      ^-'^        Vj+s-v^p  • 

In view of (4.11),  (4.12), and  (4.13)  Cramer's rule yields: 

k-j 

1   i    'P '"'  'P vL '^-J ■■ ' b. = ^ y 
J  A-" p=l 

v 
V -p 

1    vA„ a, 
v=i  P  k-v 

(4.15) 

(4.17) 

(4.18) 

(4.19) 

Formula (4.19) provides a closed form expression for the coefficients in 
(3.2) in terms of the coefficients a of the autoregressive model (2.9) 

and in terms of the eigenvalues of the corresponding difference equation. 
Since some of the eigenvalues may be imaginary, computation of the b.'s 

by (4.19) still may require complex number arithemetic. This can be 
avoided by combining complex conjugate terms in (4.19). 

*      *        * 
Let (A|,Xj), (A^,A^ )>• • • >(^^J.A^) be the pairs of complex conjugate 

roots and ^2u+l'"'"''^k ^^ ^^^^  ^°°^^  °^ ^^^  characteristic polynomial. 
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Write  (4.19) as follows: 

1        " 

-s        r        h^ 
X„    log    X     y    a.    .      XV 

P               P v=0    ^'^'^    P *  y    + j 
k 

I 
v=l 
I  ' ^k-v ^p 

1 

k-j 
^n^    log''     A„        y        \     .     y   X D ^ D       ^-       k-1-V 

^T       ^       k 
A"^    P=2U+1 ^ 

v=0 k-j-v > 

v=l '^ 

where T^ is obtained from the first term in the brackets by replacing 
X    by X    .    By adding the terms in the brackets we get 

r r 

(• 

k-J k       *v    / *-s      , * k-j 

P   ^^0    k-J-'   P/v=l   ' P 
: I I d„x   +|x 
Vv=l   ' P      \ 

^^°9    ^,    1   a,   .      X   1   Id^X^   +h      log^,    I   a 
v=0 

(J,'.':)(J.'-':') 
(4.20) 

where       d^ = v a^_^  . 

The denominator D    of the last expression can be transformed as  follows; 

"p ' X "''VP*'" ' ,1 '^Vn'  (\\    * Oo ) 

By writing X = A +iB , a = log |X |, and 3 = arctan B /A we get 

k  k   (v+n)a 
D = y  f  e    '^ cos 
P  v=l n=l 

r (v-n)3 I d„d L ^  ' pj  V n 

Similarly, the numerator N of (4.20) can be transformed into 
r 
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k-j     k I       . j-^ 
^p = 2    );        I   ^k-i-v ^n exp (v+n-s)a    + r log /a_ + 

P v=o    n=l   '"^-J- P    ^P 

cos (v-n-s)3    + r arcsinfg yVa^+3 ^ 

Neither N    nor D    involves any imaginary elements. 

Consequently, we get: 

1 u      N^      , k 

^       A      p=l     ^p      A"^ P=2U+1 

^  -s 1     r ,     '^v^ ,v 
^r.      log    K    }    a^   •    ^ P ^      P ^Q    k-j-v p 

k 
r   V a 

v=l k-v^p 

(4.21) 

a closed form solution for the coefficients in (3.2) 

5. ERROR BOUNDS 

In this section we develop expressions which yield approximate 
bounds on the errors in derivatives calculated by the method of Section 

Let x^ = x(t), t=0,A,2A,...,nqA be tabular data of a function 

y(t) eA with the measuring error e., i.e. 

x(t) = y(t) + e^. (5.1) 

We assume that e^ is a white noise with zero mean and variance a  .    As 

shown on the preceding pages the r-th derivative of y(t) is expressible 
in the form 

^^''^(t) = r   b.  (rj y(t+jqA). (5.2) 
j=s+l J 

and  its approximation x^""^   (t)  is 

,(r), 
k+s 

x^'Mt)  =      I      b      (r) x(t+jqA). 
j=s+l    -J"^ 

(5.3) 
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where the b. 's are expressed in terms of the coefficients in an auto- 

regressive model 

k  . 
x(t) = I      a. x(t-jqA) (5.4) 

corresponding to the difference equation 

'    k 
y(t) = I   a. y(t-jqA) (5.5) 

satisfied by the function y(t).    Let 

df''^  (t)  = x^''^(t) - y^'^^t) (5.6) 

denote the error of the approximation. Since the coefficients b. 
j ~ -^ 

are functions of tabular data, we can use the relations (5.1)-(5.5) to 

t) < 
:(r-), 

(r) 
express 5^ '(t) as a function of x(t),t=0,A,..., and, thus, obtain the 

variance of 6^ '(t) expressed in terms of statistics of e.. This yields 

a measure of the accuracy of numerical derivatives obtained by the 
method described in the preceding sections. 

In the present section we derive an approximation to the bound of 
(r) 

the variance of 6^ (t). To this end let 

Bj_s = b._3(r) - b._3(r) . (5.7) 

i.e. 6- c is the error in the estimate of b. (r). In order to simplify 
J--^ J-s 

subsequent algebraic expressions we assume that the estimates b. (r) 

are unbiased, i.e. 

E (B 3) = 0. (5.8) 

By substituting (5.2) and (5.3) in (5.6) we get 

:(r), 

where 

6^'^^(t) = A^ + B^, (5.9) 

k+s 
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and 
k+ s 

j = s+l  ^ 
(5.11) 

(r) It follows from (5.8) - (5.11) that E{&^^'{t))=0.    Therefore by squaring 
both sides of (5.9) and taking expected values we get 

a^(r) = E(A^) + E(B^) + 2E(A^B^). (5.12) 

where a (r) is the variance of the error in the r-th derivative. 

Since E(B^A^) < /E(A^) E(B^) we get from (5.12): 

2 
o^ir) /v/E(Af7+\/E(B|y y (5.13) 

Thus,  E(A^)  and E(B^)  define a  bound on a {r). 

It follows  from  (5.10)  that 

o o      K+S rt 
E(A^)  = a'      I        b^,(r). 

j=s+l      ^"^ 
(5.14) 

We replace the values b._ (r) in (5.14) by their estimates and obtain 
J  ^ 

an approximation: 

o ,    k+s 
E(A;)  = a^      I 

j=s+l ^j-s^^)- (5.15) 

Let Xj and A., j=l,2,...,k be the eigenvalues of the difference eq 

tions (5.5) and (5.4), respectively.  Let 

ua- 

and 
"j = ^j ■ ■'i 

/\ 

'r'r -  X. 
J 

(5.16) 

(5.17) 

We assume that all the eigenvalues of (5.4) and (5.5) are of multi- 

plicity one. Then the coefficients b. (r) and b. (r) are given by 
J-s      j-s 

(4.19) in terms of A.'s and a.'s and A.'s and a.'s, respectively. An 
J      J      J      J 
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expression for B.   in terms of the a.'s can be obtained from (4.19), 

(5.7),  (5,16), and (5.17).    This is a non-linear algebraic function. 
We approximate this function by the following linear relation 

k+s k    d6. 
B^ =    I        x(t+jqA)    I    -^ a.    or 

j=s+l i=l    ""i 

k k+s      d3,- K K+S      ap- 

^      i=l    ^   i=s+l      ° ^i 
(5.18) 

where 

dB 
ill. 

d3 
da. 

ill 
da. 

'i=0 

k    3B. 

p=l    9X„ 
P       P 

5 
8a. a 

i=0 

and 
9B- 

da 2 

3B J-s 
da 

^i=0 

'i-0 

9B- 

da 
a .=a • 

1    1 

(5.19) 

In order to simplify further derivation of an expression for E(B^ ) we 

introduce the following notation: 

Np = A- log-- Xp. 

^p"- ii" 'p '^-"' 

N(j.p)   = N    N   .   , 
P    PJ 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

and 

ffX     A A     a     a a   )   =  ^(J'P) (5.24) 
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Then it follows from (4.19)  and  (5.7)  that g.      = f(XT,. 
J-s I 

f(Xl ,... ,A|^,a^,.. .,a|^).      Therefore, 

3D. 

9A_ 
p e_ 

P        P 

■\'^1 ^k^ 

(5.25) 

By  (5.23) 

9X„ 3X„  'pi 9X       ' p- p p     ^"^ P 
(5.26) 

By  (5.20) 
m sN        rN 

P P P ^     P 
(5.27) 

By  (5.21) 
8N   .      k-j+s 

X u-1 (5.28) 

By (5.22) 

p      u=l 

Similarly we get 

'6j-s 

p        V      2  ,u-l TTT^ =    >    u    X        a, 8X_        ^, p        k-u 

9D. 

3a. a .=a. 1    1 

k^o^->^-'P) 
I — r^  

P=l D„ 

(5.29) 

(5.30) 

where 

3N(j.p)  ^ ^    .   k-j+s-i 
3a.      - % ''p (5.31) 

and 
9D 

9if    =   (^--^^p 
k-i (5.32) 

k k-u 
By definition of X   we have X      =    I    a X        .    We differentiate this 
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expression with respect to a. and solve the resulting equation for 
8Xp/3a.: 

9X 

3a. ^ ^p -/ 
kA„   - I    (l<-u)a^X    J. 

u=l L P 
(5.33) 

The formulas (5.19) - (5.33) define the coefficients d3._ /da. in (5.18) 

and, thus, the quantities C. in the following: 

k+s      d3. 
S  =      ^       ^ii^   x(t+jqA) (5.34) 

k      k 
Je have by (5.18)  B.   -    ^    C    a..    Hence B/ =    ^      ^    %«v^u^ ^""^ 

^  1=1 ^ ^       ^   v=l u=l "  " ^ 

E(B^2) ._  E^[E(B/|t)] = E^ 
r k  k 

y  y C C E(a a |t) ^,     ^1  u V ^ u v' ' 
v=l u=l 

(5.35) 

where the conditional expectation is over the distribution density func- 
tion of the a.'s. Since E(a a |t) does not depend on t we get 

E(B/) = I      I E(a„a^). E,(C„C„) - I  I E{a„a,) • i I C„(t)C^(t) 
v=l u=l v=l u=l t 

k  k 
1 y y  y E(a a )C (t)C (t). 
N i: ^1 ^1  ^ u v' u^  v t v=i u=i 

The quantity Ho      in (2.17) is small as compared to the diagonal 
P ^ 

elements of the matrix M. Therefore the estimates a. in (5.4) differ 

only little from the least squares estimates of the a.'s, and hence 
■J 2  ~ 2 -1 _ 

the covariance matrix (E(a a,,)) can be approximated by a (M-Na I) 

a M . By writinq m  for an element of M obtained by estimating the ■^     ^ uv 
regression coefficients (a.'s) we have the following approximation: 

J 

E(B/) -^   I      I      I    C^(t)C^(t)m 
^      t u=l v=l ^      ^^ 

(5.36) 
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If Ap's and a.'s  in the definition of C^^ are replaced by \  's and 

aj's, formula (5.36) yields an estimate of E(B^^). This together with 

(5.13) and (5.15) defines an upper bound of the variance of the error 
in the estimate of the r-th derivative. However, this is not an absolute 
bound since its estimate depends on the assumption that (4.19) yields 
unbiased estimates of the b^'s, on the accuracy of linearized expressions 

of bj's in terms of a^.'s and X^s, and on the effect of replacing a.'s 

and Xj's by their estimates, a.'s and X.'s, respectively. 

A few examples listed in Appendix B show that the formula (5.13) 

yields reasonable bounds of a^(r) in almost all the cases tested and 
hence it can be used as an indicator of accuracy for the numerical esti- 
mates of derivatives obtained by the method of this report. 

Further applications and examples will be presented in a companion 
report now in preparation. Additional sets of synthetic data as well as 
samples of field test data will be considered therein 
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APPENDIX A 

Lemmas 1, 2, 3 below simplify proofs in Section 2, while Lemmas 
4, 5 are found useful in Section 3. 

Lemma 1. Suppose y(t) satisfies the conditions (a), (b), and (c) 
of Section 2. Let S (A) be the symmetric function of the roots of (2.4) 

of order j and M.(A) = S.(A) - C^) .  Let 

N(A) = I     (-l)J-l M,{A)y(t-jA). 
j=l        J 

Then 

d^N(A) 

dA^ 
0  for q=0,l k-1. 

(A.l) 

(A.2) 

A=0 

Proof. With f(t) replaced by y(t) equation (2.4) can be written 
as follows by expanding P^, replacing powers of B , and solving for 

y(t): 
k   . . 

y(t) = I  (-l)J-^ S (A) y(t-jA) . (A.3) 
j=l       ^ 

By substituting (A.3)  into the identity 

Nk. 
k .    Ik\ 

(1-B^)>(t)  = y^+    I    {-^)^    L      t(t-jA) we obtain 

\j-lr (l-B^)V(t)   =     I   (-l)J-'M.(A)y(t-jA)^ N(A). 
j=l ^ 

It follows from (A.4)  that the k-th derivative of y(t)  is 

.<^'(t) lim N(A) 

A-^0    A 

(A.4) 

(A.5) 

Now we prove  (A.2)  by induction on q.     Indeed,  it follows  from the def- 
inition of M.(A)  that M.(0)=0 since each term of S.(0)  = 1.    Hence by 

(A.l)  N(0)=0,  i.e.   (A.2)  holds  for q=0.    Suppose it holds  for q=n<k-l. 
Then  by applying L'Hospital's  rule to  (A.5)  n+1   times we get 
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,(k)(„,„,d^%A)/dA^ 
A->0 k(k-l)...(k-n)A k-n-1 

(A.6) 

(k) By hypothesis (b) y^ '(t) is bounded. Therefore (A.6) implies that 

d"^lN{A)/dA"^^ A-0 

For 

0, i.e. (A.2) holds for q = n+1 < k. Q.E.D. 

J-1 
n. and X. in (2.2) let m.  =    J    (n.+l) and v _,, = v ^^ 
J    J J  ^^2 '^i     i 

= A.. Let T, . be the set of all the combinations of the integers 
J-+1   -J      ^'^ 

1,2,...,k taken j at a time. Let M. = M.(A) 
J      J 

Lemma 2. Let 

L. (i,,i2,...,i .) = I    log v 
^    ^    ^ J   u=l     \ 

Then 

(A.7) 

I    (-1)^ jP I  Lj-P (i,,...,i.) 
i=l       T   "^   -^    J 

(A.8) 

for p < q < k. 

Proof. Differentiation of (A.l) yields 

But 

d^N(A) _ V I    (-1)^'"^ k-y^^^t-jA) (-j)^ 

q-1 
I      (J) M.(^-P) y(P)(t-jA) (-j)P]  .    (A.9) 

p=0 

M.(q-P) = y      A   A     A q-p , . 

'k.j   ^   '^    J 

36 



Thus, 

d^N(A) I   (-i)M V y^^ht) (-j)P 
A=0 j = l p=0 

k,j 
ly (M.ij.. .,ij) 

By interchanging the order of summation we get 

d^N(A) 

dA^ 
A=0      P= =0 \n 3=1 

.1     iq-p 

'k,j 
^k      (ii.i2'---'ij) (A.10) 

It follows  from  (A.2)  and  (A.10)  that 

q-1 

P 

(A.11) 
k,j 

for q < k, 

Let PQ < q-1 be the largest value of p with non-vanishing coeffi- 

cient of y(P)  in (A.11), i.e.   (A.11) can be written in the for )rm 

p=0  P 
0, an ordinary differential equation of order p. 

ni      "j 
whose solution y(t)  is thus of the form y(t)  =11    C..t'' 

j=l  i=0    J^ 

^J^ 
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m ^ 
with Pp, =    I  (n.+l).  But it then follows that y(t) satisfies the 

m    y. P..+1 
difference equation P(B)y(t)=0 where P(X) = I    (A-e ^) ^ , i.e. a 

difference equation of order p^ < q-1 < k, contrary to the assumption 

(c). Therefore in (A.11) we must have 

I    (-l)JjP I    LJ-P (i,,...,i.)=0, (A.12) 
i=l        -p    K.    1     j 

for p < q < k, which is (A.8). Q.E.D. 

Next we prove the following lemma, making use of the previous one. 

Lemma 3. Let L (i^ ,i„,... ,i .) be as in (A.7). Then 

\,u-M^    j (-!)¥- I  L",(ii,i,,...,i.)^V    (A.13) 
^'^ 'k,j 

for u=l,2,...,k, where S.  is the symmetric function of C,-=log v., 

i=l ,2,...,k, of order u. 

Proof. This lemma is proved by induction on k. When k=l the 

right hand side of (A.13) is -^'{-l)•E,■^  which is S^ j. Suppose that 

(A.13) holds for k-1. For any positive integer u, S.  is a linear 

function in each argument and it can be written as follows: 

^k.u(^k) =^kVl.u-l-^ Vl.u ^"-^'^ 
for u=l,2,...,k (we assume that S, •, . = 0 and S,^ Q=1 for k > 1). Since 

V in (A.13) is a symmetric function of the 5-'s, we need only to show 

that V is representable in the form (A.14), i.e. that 
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and 

(A.16) 

We write (A.13) as follows; 

^^^k^ " u:(k-u): 
k-1,1 

Ci(^-) ^ ^l 

+ (-1)" k}'-" L|;_J (i,2,....k-i) 

* I <'-k-l('l-^2- •'j-l' * 5k' ■] 
Therefore, 

V(0)  = _M01 
u:(k-u) 

(A.17) 

■ I L^_i(i)  +  (-l)^k^-"L"^_j(l,2,...,k-l) 
^k-1,1 

+ V  (-1)^' J^-"    I        L" ,(1-   ,1-    i. 

^"^ 'k-l,j-l 
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By changing the summation index in the last sum and by combining the 
terms we get 

V(0) 

We apply the 

binomial theorem to the expressions in the brackets and get 

^ ^"^ 'k-l,j 

k-1    , k-u /k-u\ .   . "J 

K- i , J 

By the inductive assumption the first term in the braces multiplied by 

the factor outside the braces is S. ,  . We interchange the order of 
K-1,U ^ 

summation in the second term and get: 

k-1  k-u /k-u 

I 
i=2 

V(0) = S, 1  + ^—r-r J    \   i 
'' \u  u!(k-u)! -tr,   ^ k-1 

k-1 
\j   .k-u-i I    (-1)^ J^-"-^  I   L^, ,(i,,...,i.) 

k-l,j 

By (A.8) the expression in the brackets is zero, i.e. V(0) = S, , 
k-l,u 

Thus, (A.15) is proved. 
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I      I 

In order to verify (A.I6) we differentiate (A.17) with respect to 
^1^ and get: 

9V 
95, J^   {-U5-1 . u(-l)k k^-" [4.^(1.2,...,k-lK u-1 

k-1 
+   I i-iy 

k 

u-1 

■^ 'k-l,j-l  ^ 

(A.18) 
By applying the binomial theorem to the expressions in the brackets 
and by combining the terms containing the same powers of 5, we get: 

(-1)  )• V f  nJ+l/.-4.nl<-u  V  ,u-l ,, 8V 
3? -Mu-i];(k-u): •M-i)^--(J^i)--" I Ln(ip...,i 

u-2 /u-l\ . k 

i=l \ i / ^ j=2 T, , , , ^-1    1    J-1 I 'k-l,j-l 

By applying the binomial theorem again and by interchanging the order 
of summation the coeff" 

be written as follows: 

(A.19) 

of summation the coefficient of the zero power of E..   in the braces can 

k-u /k-u\k-l 
II 

i=0 \ i / j=l 
(-l)j j^-^-^' I   L;;:} (ii,...,i.). 

k-l.j 

By (A.8) all the terms of the outer summation except the term corre- 
sponding to i=0 vanish. Hence the coefficient of the zero power of 
5|^ in (A.18) is 

k-1   k-1 

(u-i):(k-u): ,V  ^  T^ ^-1 (h"-"'j)- 
^ 'k-l,j 
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oy the inductive assumption this is S. , ,. Thus, in order to com- 

plete the proof of (A.16) it remains to show that the coefficients of 
eyery  non-zero power of L in (A.I9) vanish. Since the highest power 

of E,.   in (A.19) is u-1 we need to consider only the case of u > 1. 

Th -u-1 e coefficient of 5^" can be written as a constant times the form: 

k    . .  /k-1 k-1 
I      (-1)' (i+1) 

i=0 

k-u k-1 

-d-B)''-'' X 
k-u 

x=k • 

u-1 Since u > 1 it follows that the coefficient of E,.       is zero. The co- 

efficients of E,'!,  i=l ,2,... ,u-2 in (A.19) vanish because of (A.8). This 

completes the proof of (A.13). 
-1 

We use the following notation in the next lemma: II (r-v)=l, 
v=0 

<p = ((^^l)'^r' (s-^2)Px^^^....,(s-Hk)Px^^^V 

A^ = ^ (log'""Px  n  (r-v) ) for p=0,l,2,...,n , q=l,2,...,m, 
A \     ^ v=0     / ^ 

and L = i^lo>hv■^■'\'^ZO'h^'■■"^Zn^'■■^\,n/  ' 

Lemma 4. Let y(t)KA, i.e. 

n . 
m   J i .t y(t) = I I    c . t' X 

.1=1 i=0 J^   ^ 
(A.20) 

m j 
with k = [ (n.+l). If there exist b = (b-, ,b,,... ,b. ) such that 

.1=1 ^ 1 ^    K 

Lb = A 

then for ewery  integer s satisfying -t-A < sA < T-kA 

(A.21) 
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(r) ^'^^ 
y      (t) = I        b.  y(t+jA). (A.22) 

j=s+l  J ^ 

Proof. Substitute (A.20) on both sides of (A.22) and equate the 

coefficients of the terms t^A^ on the opposite sides of the result. 

Then (A.21) is obtained. The lemma is proved by reversing these steps 
as follows. ^ 

The expression (A.21) is a system of equations 

T     1 P"-'- 
^p ^  =^log'"-P Aq ^n^ (r-v), p=0,l,... .n^, q=l,2,...,m or 

k 
/. . .ND ,S+i .     1  -  y-n     i"-"- 

(A.23) ; (s+j)PA^^n ^Vlog'-PA^ V (r-v) 
J = l       ^   ^  A        ^ v=0 

For each q-l,2,...,m and z=l,2....,nq multiply the equations of (A.23) 

corresponding to p=u-z (u=2.2+l,...,n ) by c  (^) and sum on u. This 
yields 

n 

u=z  "^^ \ ^ / j=i        q   j 

9    /,.\  „ ,,.,    u-z-l 1   H     / u \  r u+z    u-z-l 
7 uL 'qAzj^°9 "    \      n    (^-v)-  (A.24) 

v=0 

write (A.24) in the form 

n 

'7L"^-'°' \(u-z) n   (u-v).     (A.25) 
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Now we multiply (A.25) by t^ and sum on z from 0 to n  : 

"q z /u\!< ,^. 
y   t^     y c  (    ) y  (s+j)^"' x^^^ b. 

q j=i 

"q    "q / r  \ u-z-1 

A  z=0 u=z  ^ H \  / y=o 

We interchange the order of summation on both sides of this equality: 

j=l ^ ^        u=0 ^^    z=0V^ / 

"q u /     \u-z-1 

h^    u=0      ^      z=0 ^ V     /v=0 

Multiplication of both sides of this equality by A yields: 

I      b. {   c      x^^^-^J  (t+s+j)" = {    c,„^-(tV). 

By summing both sides of this equality on q from 1 to m we get: 

n„ 
"1    m   q     t+s+i     II 

j=l J q=l u=0  ^" ^ 

n 

= y  y  ^- (c t%*). 
q=l u=0 dt^  ^"  '^ 

^ fr) In view of (A.20) this is I   b. y(t+s+j) = y^ '^(t) which is equivalent 

to  (A.22). 
n n "^    f +1 Hn +11 

Lemma 5.    Denote x\\\ =   11   jl, n:= I j, and P„ =   n X.    ^^^"j ". 
j=l j=l "     j=l ^ 

Let the matrix L be as in Lemma 4.    Then 
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m     m   n.: m j-1 
det L = p II n.:: n X J n n (x.-x.) 

"■ i=l '      3=1      J  j=2 i=l  J ^ 

(n.+1)(nj+l) 
. (A.26) 

^^^2£f-  Let T. = y. g^ and T.P(X.)f(y.) = T.Pf(y.) 

1 j 

i.e. the result of the operator T.^^iX.)  is obtained by applying the 

operator T. p times and then substituting X. for y.. In particular, 

TJ°^ (Aj)f(y^.) = f{Xj.). Let m^ = j    (n.+l) and 

T(p) = n  n   T, J"^ (X.) . 
j=l i^m.._-,+l  ^       J 

(A.27) 

Let 

* 
L = 

s+1   s+2 s+k 
■Ml 

S+1   s+2 s+k 

Then T(m)L = det L. This identity is used to prove the lemma by in- 
duction on n^., j=l,2,..,m. Indeed, if n^^O, j=l ,2,... ,m=k then by 

(A.27) the operator T(m) = T(k) simply replaces y. by X., j=l,2,...,k, 

i.e. the left hand side of (A.26) is a Vandermondian multiplied by 

n s+1 k  j-1 
Xj  ^"^ ^^^  '^^9'^^ l^^nd side reduces to n L n  n (X -X ) 

J-1 j=l J j=2 i=l ^ J ^ ' 

i.e. (A.26) holds for this choice of n^.'s. By induction assume that 

(A.26) holds for n^ .n^ n , with 

"p+1 = "p+2 n = 0 m (A.28) 

and np replaced by v such that 0 < v < n   Under these assumptions 
(A.27) implies that ^ 

TCm) = T*(j,p,v) T(p,v), 
(A.29) 
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* 
where T (j,p,v) is an operator that replaces y. by X.     ,,  , for 

J j-mp_^-v+p-l 

j=m ^j+v+1,...,k and 

T(p.v) =     n ^- T(p-l), (^3^^ 

with T(p-l) defined by (A.27). 

Let 
*,   ^      P-1 P-1    n. : {n.+l)(n.+l) 

p (p) =   n   n.::   n   \.^ p^ ^     n      (x.-x.)   ^        ^ 

By induction  (A.26)  holds for the parameters in (A.28).    Hence it 
follows: 

T*(j,p,q)   T(p,q)   L* =  P*(p)q:IXp^=X  ^q+IJ^^+l) 

n    x^.^i   n(x-x.)(q^i)("i^i)   n(x. - xJ^^^ 
P+l    ^      i<p    P    ' j>p   J        P 

m 

n,+l 
n 
■ ^p 

n     (x.-x.) n     (x.-x.) 
j>p       ^ j>i>p     ^ 
i<p-l 

or 

T*(j,p,q)   T(p,q)   L*  =  P*(p)q: IX^^ = X   ^^"^ ^ ^^"^l) . 
r r 

n.+l n ,,     ,   v(q+l)(n.+l)    *f .        . ^ ,      ,    "i 
(A -X.)^^    ''  ^     '  J (j,p,q) n (y.-X^) 

<P j>ni„ ,+a+l    J 
P-: 

i<p-l 

n        (y.-^i)        n yfi   n (U.-A )^^^ 
J^i^f^p-i+q+i j>"ip_i+q+i       j>p ^  P 

(A.32) 
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Since T (j,p,q)  has an inverse it follows from (A.32)  that 

P    P u'   P    i) 'P 

s+l 
j>i>mp_j+q+l      J J>mp_j+q+l    J    J>Yi+q 

i<p-l 

n,+l 

j>m 
n (y.-A ) q+l 

(A.33) 

Now let us apply the operator J^^^ (x )  to both sides of (A.33) 

It follows from (A.30) that 
P-1 

TSpl^+q.2  ^V^P'^^   =T(p.q.l). (A.34) 

We^write the right hand side, say, R(p,q) of (A.33)  in the following 

where 

R(p,q)  =  (y _x  )q+lR 
(A.35) 

Ri = P*(p)q;:A^q=A^(q+i)(s+i) n   (A -A.)(^^i^("i^i) 
P      P 

" _(^J-!-lJ„, +n+9) 

1<P 

(y.-yjur^ J>%_l-q-2^^J  ^%.l-q-2^  j>i>m _^.q.2^'r^J^^mp,^.q.2 

TT S+l        „      , "i+l n,+l 

i>m      +0+2 'J        i<nl   ^^"1    ^+q+2-^•) " (y -X  )   ^ J>'"p-l+q+^ i<P-l p-l   ^ j>m _^+q+2    J    ^ 
P- 

i<p-l 

n (y.-Aj^^^ 
J>mp+i+q+2      J    P (A.36) 
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Application of T^  ^ ^p ^°  (A.35) yields a sum of terms containing 
p-1 ^ 

derivatives of (y   , ^^-X )^  with respect to y   ^ ^^ of orders mp_j+q+2 p' ^     ^mp_j+q+2 

0 up to q+1. Thus, we can write 

with derivatives of (y   , .^-^ )   of order less than q+1. There- 
m i+q+i- p 

where the second term on the right hand side is the sum of the terms 

,q+i 
„p_^Hq+2 'y 

fore by substituting y        ^ ^^=X    in  (A.36)  and in  (A.37) we get •^ ^    m    i+q+2    p p-1  ^ 

.    n   (A-A.)(^^i)("i^i)      n       (y.-xj       n (yr^-)C^ 
i<p-l    P    ^ J>%_i+q+2    ^    P    j>i>m ^^+q+2    J     '    f' 

c+1 "■,•"'■1 "i''"! 
n yf^     n     (X-X.) ' n (y -x.) ' 

J>"ip.i+q+2    "^      i<p-l      P J>nip_i+q+2      ^^ 

p- 
j>m^+q+2      J    P 

or 
n+1 (a+D- (q+2)(n.+l) 

.      n        (y.-xj^^2 P*(p)x;^^^)(^^i)      n        (y.-X.)""' 
j>mp_^+q+2    J    P P ■     j>mp_j+q+2    ^ 

i<p-l 
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•   n   (y -X ) 
q+1 

n    iu.-M.)    n s+1 

By comparing this with (A.33) we see that 

^r^+q+z (^p)R(p.q) = R(p.q+i) 

In view of (A.34) we have 

T(p,q+1) L* = R(p,q+1) 

(A.38) 

(A.39) 

By applying the operator T (j,p,q+l) to both sides of (A.39) we obtain 
(A.26) for n, ,n2,...,n ,, and n replaced by q+1. This completes the 

proof of the lemma. 
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APPENDIX B 

Details of the procedure for numerical differentiation according 
to the method of this report will be described in a forthcoming report 
that win contain examples of synthetic data as well as applications to 
experimental records. Here we include only a few illustrations that 
compare the accuracy of this method with the accuracy of moving 
polynomial arcs, Butterworth filter, and spline. These methods were 
selected for comparison because they are frequently applied to problems 
of interest to BRL. Furthermore, the corresponding computer programs 
are available. Also, spline approximation yields one of the most 
accurate, if not the most accurate, derivatives of all the commonly 
used methods for numerical differentiation. Comparison with Kalman 
filter is not included here since the results of this method are highly 
dependent on the assumed dynamics. If linear equations are assumed 
that are satisfied by a sine function of a given frequency, Kalman 
filter produces good results for the corresponding synthetic data. 
However, if the same dynamic model is applied to synthetic data obtained 
from, say, an exponential function, estimates of derivatives are poor. 
Illustration of these cases will be provided in the forthcoming report. 

The synthetic data used here is described in Table 1. Here column 
1 numbers the cases from 1 to 6 for convenience of reference. The 
corresponding functions x(t) are specified in column 2. The last case 
here is the Bessel function of the first kind of order zero. The 
values of the functions were computed at points in the intervals listed 
in column 4, and column 3 shows the step size for selecting the points 
in the respective intervals. Pseudorandom white gaussian noise with 
zero mean and the standard deviation a  given in column 5 was added to 
each value, and then various methods for numerical differentiation were 
applied to the noisy data. 

Table 1. Synthetic Data 

1 
Case 

2 
x(t) 

3 
A 

4 
I 

5 
a 

1 sin 2TTt .004 [0,1] .02 
2 sin 2Trt .004 [0,1] .05 
3 e^ .01 [0,5] .01 
4 4^(l+t+tSt'') .004 [0.2] .32 
5 sin 27rt+.lsin lOTTt .004 [0.1] .05 
6 J,(t) .01 [1.6] .01 
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The methods used are listed at the top of Table 2. Here moving 
polynomial arc corresponds to a cubic polynomial fitted to either 11 or 
17 data points as indicated. The derivatives were evaluated at the 
midpoint of this span. Thus, derivatives at a few points at the 
beginning and the end of the data sequence are not available. 

The Butterworth filter applied here corresponds to the transfer 
pi     q    2   2   3 

function  Tr/(s +2Trs +2TT S+TT ). This program does not provide first 
derivatives at 65 data points at the end of the data sequence when 
A = .01 and at 163 data points when A = .004. Additional points are 
lost when higher derivatives are calculated. The method of this report 
provides derivatives at every data point with appropriate values of s 
in (3.2) and in the corresponding expressions for higher derivatives. 
The bulk of the derivatives are computed at the midpoint of the span 

of formula (3.2), i.e., for s = - N^J • Estimates of the bounds as 

described in Section 5 also depend on s. In the examples of this appen- 

dix we use only s = -P^J> i.e., the RMSE's of the numerical derivatives 

are obtained here by comparing the derivatives computable by (3.2) with 
this value of s against the exact derivatives. Also an estimate of the 
bound for the standard deviation of the error is obtained by (5.13) for 
only these points. 

The double rows labeled 1-6 in Table 2 show the percentage errors 
corresponding to the data sets 1-6 of Table 1 obtained by the methods 
shown at the top of Table 2. The RMS of the differences between exact 
and approximate first derivaties is divided by the RMS of the exact 
derivative and the ratio is multiplied by 100. This yields the 
percentage error of the first derivative for the respective method. 
This error is shown in the first row of a pair labeled x'. The second 
row of each pair labeled %' '  contains the percentage errors of the second 
derivative obtained in the same way. This table shows that the method 
of the report (current method) when applied to these synthetic data 
yields far more accurate derivatives than any of the other methods. 
For instance, in cases 1-3 the first derivative obtained by our method 
is from two to more than four times as accurate as by the second best 
method (spline), while the error in the second derivatives is lower by 
more than an order of magnitude. In the remaining cases the current 
method also produces much better results than other methods except for 
case 6 where derivatives obtained by the Butterworth filter are more 
accurate. 

Bl 
J.N. Groff and A.N. Gordon, "The Methodology and Preparatory Analysis 
of Tracking Data for the Antitank Missile Test (ATMT) Program. 
Part I: General Methodology and Shillelagh Analysis". Tech Report 
No. 151, AMSAA, 1976. 
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Table 2.    Percentage Error 
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25 14 88 6 1.3 

X'' 275 99 98 48 1.4 

X' 
2 

62 33 88 15 3.4 

I" 688 248 98 120 3.5 

X' 
3 

.46 .25 3.4 .010 .004 

I" 13 4.7 6.9 2.2 .004 

4 
9 5 16 2.1 .23 

X'' 259 93 30 45 .80 

X' 
5 

55 30 91 13 8 

X" 89 255 99 46 18 

X' 
6 

57 31 5.8 13 7.8 

X" 2341 8384 8.4 403 33 
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Table 3 illustrates how an approximation of the bounds of the 
error compares with the actual RMSE's, Here the first row lists actual 
percentage errors of the first and second derivatives for the various 
cases listed in the headings of the column-pairs. This row is the same 
as the last column in Table 2. The second row here contains the ratios 
of the bounds a{r)   (r=l ,2) computed by (5.13) to the RMS of the respec- 
tive exact values converted to percent. We see that (5.13) yields 
bounds about 2 to 10 times higher than the respective RMSE's except for 
the second derivative of case 6 (Bessel function) where the estimate of 
the bound is much too low. 

Table 3. Error Bounds 

X'  X"  X'  X"   X'  X''  X'  X"  X'  X'^  X'  X" 

1.3 1.4 3.4  3.5  .004 .004 .23 .80  8   18  7.8  33 

3.5 2.4 8.9  6.2  .02  .02 2.1  3,0  29   91  10    4.5 
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please fill in the following information. 
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